Home Practice
For learners and parents For teachers and schools
Textbooks
Full catalogue
Leaderboards
Learners Leaderboard Classes/Grades Leaderboard Schools Leaderboard
Pricing
Teacher Pricing API Pricing
Support
Help centre Contact us
Log in

We think you are located in United States. Is this correct?

5.6 Summary

5.6 Summary (EMCGY)

Terminology:
Expression A term or group of terms consisting of numbers, variables and the basic operators (\(+, -, \times, \div\)).
Univariate expression An expression containing only one variable.
Root/Zero A root, also referred to as the “zero”, of an equation is the value of \(x\) such that \(f(x)=0\) is satisfied.
Polynomial

An expression that involves one or more variables having different powers and coefficients.

\(a_{n}x^{n} + \ldots + a_2x^{2} + a_{1}x + a_{0}, \text{ where } n \in \mathbb{N}_0\)

Monomial

A polynomial with one term.

For example, \(7a^{2}b \text{ or } 15xyz^{2}\).

Binomial

A polynomial that has two terms.

For example, \(2x + 5z \text{ or } 26 - g^{2}k\).

Trinomial

A polynomial that has three terms.

For example, \(a - b + c \text{ or } 4x^2 + 17xy - y^3\).

Degree/Order

The degree, also called the order, of a univariate polynomial is the value of the highest exponent in the polynomial.

For example, \(7p - 12p^2 + 3p^5 + 8\) has a degree of \(\text{5}\).

  • Quadratic formula: \(x = \frac{-b±\sqrt{{b}^{2}-4ac}}{2a}\)

  • Remainder theorem: a polynomial \(p(x)\) divided by \(cx - d\) gives a remainder of \(p\left(\dfrac{d}{c}\right)\).

  • Factor theorem: if the polynomial \(p(x)\) is divided by \(cx - d\) and the remainder, \(p \left( \frac{d}{c} \right)\), is equal to zero, then \(cx - d\) is a factor of \(p(x)\).

  • Converse of the factor theorem: if \(cx - d\) is a factor of \(p(x)\), then \(p \left( \frac{d}{c} \right) = 0\).

  • Synthetic division:

    90dce9977541474c65c21a1e6c2ca835.png

    We determine the coefficients of the quotient by calculating:

    \begin{align*} q_{2} &= a_{3} + \left( q_{3} \times \frac{d}{c} \right) \\ &= a_{3} \quad \text{ (since } q_{3} = 0) \\ q_{1} &= a_{2} + \left( q_{2} \times \frac{d}{c} \right) \\ q_{0} &= a_{1} + \left( q_{1} \times \frac{d}{c} \right) \\ R &= a_{0} + \left( q_{0} \times \frac{d}{c} \right) \end{align*}
temp text